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1. Stratified Turbulence Flows (STF) are particularly interesting for 

geophysical systems such as the Earth’s upper atmosphere and oceans. They 
are described by the NSE in the Boussinesq approximation. STF are 
characterized by a strong anisotropy (gravity) and extreme events 
(inhomogeneity) which produce large values of the kurtosis of the vertical 
velocity K

w
. The evolution of the velocity field (V

x
, V

y
, V

z
) and the 

temperature fluctuations (θ) can be studied by means of high-resolution DNS 
that typically generate several TB of data to be stored.
Convolutional Autoencoder (CAE) can be useful to reduce the 
dimensionality of the output of DNS without losing crucial information about 
the system dynamic.

2. Convolutional Autoencoder (CAE) is a particular example of 

unsupervised convolutional neural network composed by two main elements: 
encoder and decoder.  Autoencoders are usually adopted for dimensionality 
reduction, noise reduction and anomaly detection.
In case of dimensionality reduction, the encoder part reduces the initial 
dimensionality while the decoder reverses the process creating a 
reconstruction of the original input

The anisotropy of these simulations is addressed by working plane by plane, 
slicing the original 3D cube along the z axis. Then, the input is formed by a 
4x(512x512) cube, where 4 is the number of the physical variables given 
from the DNS (V

x
, V

y
, V

z
 and θ).

3. CAE is able to restore the original fields with good accuracy, but it has 

some difficulty with strong extreme events (black circles in figure below). 
Low order moments (average, standard deviaion and skewness) are well 
recovered by our model, but the forth-order moment (kurtosis) shows a higher 
reconstruction error meaning that we are missing information which describes 
the extreme events charachterizing the simulations. In particular the model 
does not completely recover the intensity of extreme events.

The figure below shows a 2D histogram of the maximum relative error 
compared to the maximum of the vertical velocity |V

z
|. Both quantities are 

computed plane by plane.

4. We try to obtain an improvement on the reconstruction of extreme 

events by using additional information which can be derived from the 
physical fields and  which have proved to be statistically correlated 
(references below) to the presence of such extreme events.

Dissipation: [Marino et al., Phys Rev. Fl., 2021 (submitted)]

Shear: [Feraco et al., Phys. Fluids, 2022a, (in preparation)]

Helicity: [Feraco et al., Phys. Fluids, 2022b, (in preparation)]

Richardson number: [Feraco et al., EPL, 2018]

from Feraco et al., Europhys. Lett., 2018

Upper panel: an 
example of a 
comparison of the 
vertical velocity V

z
 

on a 2D plane (x,y) 
presenting several 
extreme events. The 
black circles indicate 
areas where there 
reconstruction 
misses extreme 
events. Lower 
panel: comparison 
of the original and 
reconstructed 
kurtosis K

w 
of V

z
 for 

the entire test set      
(~ 15000 samples). 
Simulation time on 
the horizontal axis.

This figure shows that most 
of the points are in the 
region with max|V

z
| < 0.7, 

however it is possible to 
observe several values 
corresponding to extreme 
events (max|V

z
| > 0.8). 

The relative error doubles 
when we consider extreme 
events, and starting from 
max|V

z
| > 0.55 the relation 

shows a clear linear trend.
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Train/Validation loss defined as 
the root mean squared error 
(RMSE) obtained adding one 
additional information at time 
to the CAE. The RMSE is 
always computed over the 4 
physical fields (V

x
, V

y
, V

z 
and 

θ), ignoring the reconstruction 
of the additional field.
Adding an additional field 
means that we need to slightly 
increase the number of weights 
of the network (~ 0.5%), 
however this little variations 
does not affect the performance 
of the various CAEs. This 
figure shows that the small-
scale quantities (Ri, S and ε) 
perform better than the helicity 
H (large-scale). Hovewer, 
except for this latter, the other 
curves show more or less the 
same performance meaning that 
the additional field is not very 
helpful to improve the 
reconstruction of the physical 
fields.
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