

Extreme Vertical Drafts in Stratified Flows

Feraco et. al. (EPL, 2018 & 2021) have shown that the vertical component of the velocity field (w) exhibits in the Boussinesq framework a large scale intermittent behavior - in both space and time - in a range of Froude number (*Fr*) of geophysical interest, as recently observed in the mesosphere lower termosphere - MLT (Chau et al., GRL, 2021). Direct numerical simulations (DNS) of stratified turbulent flows with 0.01 < Fr < 0.3 were found to develop systematically powerful vertical drafts that make the statistics of w strongly non-Gaussian at the large scale, with such extreme events being associated to unstable regions of the domain and enhanced small-scale mixing. This phenomenon can be interpreted as the result of the interplay of gravity waves and turbulent motions in a resonant regime of the governing parameters, where solutions of the vertical dynamics diverge much faster than in the analogous homogeneous isotropic case without stratification.

$\partial_t \mathbf{u} + (\mathbf{u} \cdot \nabla) \mathbf{u} = -\nabla p + N\theta \hat{z} + \mathbf{F}_u + \mathbf{v} + \mathbf$	$-\nu\nabla^2\mathbf{u}$
$\partial_t \theta + \mathbf{u} \cdot \nabla \theta = Nw + \kappa \nabla^2 \theta$ τ_{NL} : non-linear time τ_{W_g}	γ_{ν} : viscous time ; time associated to the Brunt-Vaisala freq. N (gravity waves)

Run	$\mathbf{P1}$	P2	$\mathbf{P3}$	$\mathbf{P4}$	P5	$\mathbf{P6}$	$\mathbf{P7}$	$\mathbf{P8}$	$\mathbf{P9}$
Re $[\times 10^3]$	2.4	2.6	3.6	3.8	3.8	3.8	3.8	1.2	0.8
Fr $[\times 10^{-1}]$	∞	2.8	1.1	0.81	0.76	0.3	0.26	0.76	0.71
\mathbf{R}_{B}	∞	206	43.8	24.8	22.1	3.4	2.6	6.8	4.2
$\nu[\times 10^{-3}L_0U_0]$	1.5	1	1	1	1	1	1	3	4
$N \left[U_0 / L_0 ight]$	0	1.5	5	7.37	8	20	23.5	7.37	7.37
t_{tot}/ au_{NL}	30	55	103	452	406	91	62	526	422

Tab. 1. DNS parameters. *N* is the Brunt-Vaisala frequancy and v the kinematic viscosity.

Reynolds $\operatorname{Re} = \tau_{\nu} / \tau_{NL}$

Buoyancy Reynolds $\mathbf{R}_B = ReFr^2$

Turbulence Generation by Large-Scale Intermittent Structures

In the present study a series of DNS of the Boussinesq equations (on grids of 512³ pts, see **Tab. 1**), in the resonant regime of *Fr* identified by Feraco et al. (*EPL*, 2018). Here we provide first evidences of the generation of turbulence by the large-scale intermittent structures emerging in the vertical velocity (w). The system evolves under the action of a random forcing, isotropic in the Fourier space. The temporal evolution of K_w is characterized by the alternation "quite" regions, with values close to the Gaussian reference, and very "active" regions where K_{ij} spikes up to ~ 11.

Turbulence generation by large-scale extreme vertical drafts in stratified geophysical flows

<u>R. Marino</u>^{1,*}, F. Feraco^{1,2}, L. Primavera², A. Pumir³, A. Pouquet⁴, D. Rosenberg⁵, P.D. Mininni⁶ (1) CNRS, École Centrale de Lyon, (2) University of Calabria, (3) École Normale Supérieure Lyon, (4) LASP & NCAR, (5) Colorado State University, (6) University of Buenos Aires

• Kinetic and potential energy spectra averaged over the indicated peaks and troughs show that in correspondence of the peaks of K_{w} , small (turbulent) scales

2.5 1.5

Re	fe
[1]	P
[2]	F
[3]	F
[4]	С
[5]	\mathbf{N}

Dissipation Efficiency in Stratified Flows

A study of the statistics of kinetic and potential energy dissipation rates respectively $\epsilon_V = \nu (\partial u_i / \partial x_j) (\partial u_i / \partial x_j)$ and $\epsilon_P = \kappa |\nabla \theta|^2$ reveals that the extreme vertical drafts strongly feedback on ϵ_V and ϵ_P , and play a major role in the way energy is dissipated in stratified turbulence. Large-scale intermittent structures in the vertical velocity do generate small turbulent scales and dissipation, thus modulating the distribution of the kinetic energy dissipation rate.

(in space/time), determining the shape of the probability distribution $P(log(_{\epsilon_V}))$

the domain volume

10% of the global oceanic volume (Pearson & Fox-Kemper, *PRL* 2018)

$$dCor_{XY} = \frac{\mu_{XY}}{(\mu_{XX}^2 \mu_{YY}^2)^{1/4}}$$

*Contact: raffaele.marino@ec-lyon.fr