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We present a novel machine learning approach to reduce the dimensionality of state variables in stratified turbulent
flows governed by the Navier-Stokes equations in the Boussinesq approximation. The aim of the new method is to
perform an accurate reconstruction of the temperature and the three-dimensional velocity of geophysical turbulent flows
developing non-homogeneities, starting from a low-dimensional representation in latent space, yet conserving important
information about non-Gaussian structures captured by high-order moments of distributions. To achieve this goal we
modify the standard Convolutional Autoencoder (CAE) by implementing a customized loss function that enforces the
accuracy of the reconstructed high-order statistical moments. We present results for compression coefficients up to 16
demonstrating how the proposed method is more efficient than a standard CAE in performing dimensionality reduction
of simulations of stratified geophysical flows characterized by intermittent phenomena, as observed in the atmosphere
and the oceans.

I. INTRODUCTION

Geophysical fluids are characterized by the interplay of
non-linear vortices and waves, developing very complex tur-
bulent dynamics due to the density stratification and the
Earth’s solid body rotation. Large-scale motions at plane-
tary scales (of the order of 1000 km) emerge from the so-
called quasi-geostrophic balance1. At mesoscale O(100 km)
and even more at the sub-mesoscale O(10 km), when the tur-
bulent eddy turnover time becomes comparable to the charac-
teristic time scales associated to internal waves, motions feel
less the constrain of the force balance; a regime generically
identified as stratified turbulence2. This is characterized by
the presence of shear layers leading to instabilities, the verti-
cal extension of strata being controlled by the Brunt-Väisälä
frequency N. In stratified geophysical flows, the probability
density function (PDF) of the fields at the scales compara-
ble to that of the mean flow can be characterized by fat tails
with a departure from Gaussianity; in literature we refer to this
phenomenology as large-scale intermittency3–5, which differ
from the classical (internal) small-scale intermittency detected
as a departure from Gaussianity of the statistics of the field
gradients. Large-scale non-Gaussian distributions of the dy-
namical fields are observed also in other fluid frameworks
in nature, such as in the solar wind, where local shears as-
sociated to large values of large-scale increments of velocity
and density are thought to trigger magnetohydrodynamic tur-
bulent cascades in space plasmas6,7. Such peculiar behavior
of stratified turbulent flows has been observed in the vertical
velocity and (potential) temperature in both atmosphere8–11

and oceans12,13, and was extensively characterized in a variety

of numerical investigations3–5,14–16 through the forth-order
moment of the vertical velocity (i.e., through its kurtosis).
Marino et al. 5 have shown how the extreme drafts, respon-
sible for the non-Gaussian behavior of the vertical component
of the velocity, do generate local turbulence and enhance the
internal small-scale intermittency4. They provided as well ev-
idence that these structures are associated with patches of en-
hanced kinetic and potential energy dissipation, making stably
stratified flows in a certain parameter space (analyzed in Fer-
aco et al. 3 ) more efficient at dissipating energy and less ho-
mogeneous due to the irregular occurrence (in space and time)
of these large-scale intermittent drafts. The community re-
sorted to a variety of different techniques to model the wide
range of scales over which dynamics develop in geophysical
flows, from the implementation of codes based on Reynolds
averaged Navier-Stokes (RANS) equations and Large Eddy
Simulations schemes (LES)17–19, to the simulation of rotating
flows using reduced models20. On the other hand, progress
made in the field of High-Performance Computing has made
it possible to perform direct numerical simulations (DNS) of
stratified turbulent flows in a parameter space of geophysi-
cal interest21–24. Regardless of the physical model imple-
mented, a common trait of high-resolution three-dimensional
simulations of geophysical flows is the large amount of data
produced. For example, a DNS run with a resolution of
5123 grid points in single precision requires more than 0.5GB
of storage space per field and per time-step. Retaining the
simulation output with high temporal cadence is therefore in
many cases not doable, which requires to find a trade off
though investigating the evolution of the fields in space and
time is often needed to assess the complex dynamics de-

ar
X

iv
:2

31
0.

04
18

6v
2 

 [
ph

ys
ic

s.
fl

u-
dy

n]
  1

5 
Ja

n 
20

24

mailto:raffaello.foldes@ec-lyon.fr


Low-dimensional representation of intermittent geophysical turbulence with H-SiNN 2

veloping in geophysical flows. The implementation of low-
dimensional representations of the physical fields appears on
the one hand to be a viable option for the creation of database
allowing for the post-processing of massive data, relieving
from the need to perform run-time analysis, ashearsnd on
the other is useful for the usage of machine learning tech-
niques able to assimilate features of the dynamical systems
directly from the latent space25–27. The rationale behind the
dimensionality reduction of the output of turbulent flow sim-
ulations serves therefore multiple purposes, storing data for
post-processing at higher temporal frequency, enabling the
efficient training of data-mining and machine learning tech-
niques; implementing forecasting tools able to operate using
coarse-grained descriptions of the system28,29. The study of
low-dimensional manifolds has a long history in the context of
dynamical systems and turbulence 30,31, laying at the founda-
tion of so-called reduced order methods32. The latter have also
recently benefited from progresses made in machine learn-
ing based approaches33,34. Dimensionality reduction tech-
niques such as proper orthogonal decomposition (POD)35–38

and dynamic mode decomposition39,40 have been extensively
used to address issues concerning a variety of flows41–45.
Other examples of model order reduction techniques applied
to fluid frameworks are Galerkin-projection based nonlinear
methods46,47 and system identification based auto-regressive
models48,49. Techniques based on machine learning princi-
ples that have been employed in modeling turbulent flows, in
very different contexts, are Gaussian process regression50,51,
symbolic regression52,53, field inversion54,55, artificial neural
networks (ANNs)56 and many others. In data-driven methods,
ANNs are the most powerful tools in terms of their ability to
generalize and to capture highly nonlinear phenomena, typi-
cal of turbulent processes. Other developments have focused
on improving the reliability and accuracy of low fidelity mod-
els (i.e., RANS and LES), by using data from high fidelity
simulations, e.g. DNS, either to learn proper closures57–59 or
to generate high-resolution synthetic turbulent states starting
from a coarser description of the flow60. Convolutional neural
networks (CNNs) have been successfully applied to the iden-
tification of flow structures61 and to perform nonlinear modal
decomposition in turbulent flows62,63; more recently, CNN-
based architectures have been extended to fully 3D DNS of
turbulent channel flow64 and numerical simulations of flows
characterized by the emergence of extreme events, in terms of
boundary coherent structures65. These implementations em-
phasized the advantages of using CNNs over traditional meth-
ods based on principal component analysis (PCA), the former
being able to capture the intrinsic nonlinear dynamics of tur-
bulent flows. More generally, deep learning proves to be a
powerful tool for the analysis and generation of reduced-order
models of turbulent systems. In terms of machine learning
applications to stratified flows, CNN-based deep learning has
recently been applied by Salehipour and Peltier 66 to obtain
a parametrization of diapycnal mixing using data from DNS.
Convolutional AutoEncoders (CAE) are a family of autoen-
coders that proved successful in extracting information from
two- and three-dimensional data67 and their use has recently
been proposed in the context of fluid-dynamics68–70. How-

ever, most of these approaches present severe limitations if
implemented without proper tuning, and their use is often con-
strained to idealized and/or simplified cases due to the ma-
jor constraints that come from capturing transient behavior71.
Conversely, the presence of large-scale transient phenomena
developing in geophysical flows, such as hurricanes, torna-
does, oceanic fronts, etc., can be viewed as an obstacle to the
creation of reduced-order manifolds sufficiently informative
to reliably recover properties and dynamical features of geo-
physical fluid systems. Multi-scale models, such as global cir-
culation models (GCM), are powerful tools for investigating
the Earth’s atmosphere and the oceans which would greatly
benefit from the possibility of simulating complex fluid dy-
namics on a dimensional phase space lower than what can
be achieved numerically. The efficiency of machine learning
approaches is reduced when applied to systems with strong
transients, such as the non-stationary states resulting from the
presence of intermittent phenomena in turbulent flows. The
purpose of the study presented here is precisely to develop
a machine learning tool based on CAE able to produce reli-
able low-order representations of stratified geophysical turbu-
lent flows in a range of parameters characterized by the de-
velopment of intermittent (in space and time) vertical velocity
drafts, leading to the departure of the vertical velocity statis-
tical moments from the Gaussian reference. We show that
standard CAE architectures are well suited to learn a latent
space containing enough information to reconstruct the gen-
eral features of the original stratified turbulent flow. However,
strong vertical drafts developing in a certain regime of the
governing parameter, and in general high-order statistics of
velocity and temperature in the presence of large- and small-
scale intermittency, will typically not be well recovered. To
overcome this issue, we introduce here a novel implemen-
tation of CAE: statistics-informed convolutional autoencoder
(or SiCAE). The idea is based on a more general approach,
applicable to any neural network, which we refer to as high-
order statistics-informed neural network (H-SiNN). The con-
cept of statistics-informed neural network (SiNN) was first
introduced by Zhu, Tang, and Kim 72 , where it has been pro-
posed the addition of two terms to the loss function whose
effect is to constrain both the PDF and the auto-correlation
function of the reconstructed fields. On the other hand, in
our implementation, the loss function explicitly enforces the
preservation of high-order moments and this is done in order
to ensure consistency between the statistics of the original and
the reconstructed flow fields. Indeed, it is worth recalling that
statistical moments of the velocity distribution function play
a crucial role in the characterization of turbulent frameworks,
being directly related to invariants such as energy and enstro-
phy, and also to other fundamental quantities, such as the dis-
sipation occurring at the small scales. We will demonstrate
here the enhanced capability of the H-SiNN, with respect to
a standard CAE implementation, in recovering finer statistical
features as well as flow inhomogeneities and intermittent dy-
namics.
The manuscript is organized as follows: in Sec. II the nu-
merical simulations performed and analyzed are briefly in-
troduced along with a description of the equations and pa-
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rameters governing the dynamics of the stratified flows under
study; Sec. III explains the classical CAE architecture, and
in Sec. IV our implementation of statistical-informed CAE is
thoroughly described; finally, Sec. V shows in detail the out-
come of the application of the model reduction tool we de-
veloped to DNS of stratified turbulent flows developing large-
scale intermittent events in the vertical component of the ve-
locity and in the temperature field3.

II. DNS SOLVER FOR STRATIFIED TURBULENCE

The CAEs are trained using the output of a direct numeri-
cal simulation of a stably stratified turbulent flow obtained by
integrating the Navier-Stokes equations in the Boussinesq ap-
proximation in which the velocity field u = (u⊥,w) remains
incompressible, ∇ ·u = 0, while small density variations are
taken into account only in the buoyancy term. Such a model
can be written as:

∂tu+(u ·∇)u = −∇p−Nθ ẑ+ν∇
2u+F (1)

∂tθ +(u ·∇)θ = Nw+κ∇
2
θ . (2)

with θ being the temperature fluctuations evaluated relative
to a mean temperature profile θ0, N = [−g∂zθ̄/θ0]

1/2 is the
Brunt-Väisälä frequency. Such a simulation has been initial-
ized with zero temperature fluctuations and random velocity
modes applied at large-scale, in a Fourier shell centered at
k0 = [2,3]; the size of the computational box is associated
with kmin = 1, with kmin = 2π/L0 and the resolution is 5123

grid-points. A random forcing F is imposed on the momen-
tum equation at kF = 2π/L f ∈ [2,3], continuously injecting
kinetic energy into the system and allowing it to reach a tur-
bulent stationary state. In the above equations, ν and κ are the
kinematic viscosity and the thermal diffusivity, respectively
and we take the Prandtl number ν/κ = 1, with ν = 10−3; fi-
nally, p is the pressure. We adopt the following definitions for
the dimensionless Reynolds and Froude numbers,

Re =UrmsLint/ν , Fr =Urms/[LintN] , (3)

with Urms and Lint the characteristic (root mean squared) ve-
locity and the integral scale of the fluid, respectively. These
parameters, and in particular the buoyancy Reynolds RB =
ReFr2, measure the relative strength of buoyancy to dissipa-
tion and are commonly used to distinguish between wave-
dominated and turbulence-dominated regimes73. The equa-
tions (1–2) are integrated numerically using the Geophysical
High-Order Suite for Turbulence (GHOST), a pseudo-spectral
code that employs a hybrid parallelization combining MPI,
OPENMP, and CUDA74,75. It allows for a variety of physical
solvers and supports non-cubic geometry76, and non-periodic
boundary conditions77. In the following, we will make use
of the statistical moments of a distribution function up to the
fourth-order. The definition of the third- and forth-order mo-
ments, namely the skewness Skw and kurtosis Kw respectively,
of the distribution of vertical velocity w is:

Skw =

〈
(w− w̄)3

〉
⟨(w− w̄)2⟩3/2 , (4)

Id Compression factor No. Layers No. params. Latent space
CF2 2 7 321,156 64×64×128
CF4 4 8 339,892 32×32×256
CF8 8 9 324,772 32×32×128

CF16 16 11 349,804 16×16×256

Table I. Description of the four CAEs architecture: the compression
factor (CF), the number of layers referring to both the encoding and
decoding part of the network. The number of parameters accounts
for all the weights and biases that have to be optimized during the
training phase, and the latent space is the reduced space after the
encoding network is applied.

Kw =

〈
(w− w̄)4

〉
⟨(w− w̄)2⟩2 , (5)

where averages can be either computed over the entire simula-
tion volume or on sub-domains, such as horizontal planes. It is
worth recalling that Sk = 0 and K = 3 are the reference values
for a Gaussian distribution, whereas values of Kw larger than 3
are indicative of PDFs with fat (non-Gaussian) tails3. As ob-
served by Feraco et al. 3 , the volume kurtosis Kw shows large
non-Gaussian values in a narrow range of the Froude number,
with a peak at Fr ≈ 0.076, compatible with actual geophysi-
cal flows. The study presented here focuses on a run charac-
terized by this value of the Froude number, in3–5,78, exhibit-
ing indeed high levels of large-scale intermittency (see Fig.2
of Feraco et al. 3 ). This simulation is well resolved, meaning
the ratio between the largest wave number kmax ≈ 512/3 and
the Kolmogorov scale kη = (ν3/εv)

−1/4, εν being the kinetic
dissipation rate, is kmax/kη ∼ 1.8.

III. CONVOLUTIONAL AUTOENCODER THEORY

An autoencoder is an unsupervised feed-forward artificial
neural network (ANN) that aims to reconstruct a given data set
through a process involving data compression and recovery79.
Indeed, its main objective is to create a reliable and reduced
representation of the input data set, which is particularly help-
ful for either creating reduced models or simpler but still infor-
mative representations of high-dimensional data. The network
consists of an encoder part P : RD −→ Rd (with d < D), which
compresses the input data into a smaller space representation
(or latent space), and a decoder part Q : Rd −→ RD, which
reconstructs the encoded data back to the original input di-
mension. When the mapping kernel is linear, the autoencoder
can be considered as a singular value decomposition analysis.
An autoencoder that employs convolutional layers to perform
the encoding and decoding operations on images, or more in
general on 2D (or higher) data, is generally termed Convo-
lutional AutoEncoder (CAE). During the convolution opera-
tion, the kernel swipes the data domain to extract features and
learn spatial and/or temporal dependencies. The process is
then carried out across multiple layers, obtaining representa-
tive features in a hierarchical sense80; CAEs with many hid-
den layers can be considered as deep neural networks (DNN).
The initial layers learn a low-level representation or particular
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details about the data, while subsequent layers focus on larger
and larger-scale information. In our work we developed four
CAEs with different compression factors (CFs), defined as the
ratio between the input and the latent dimensions, from 2 to
16; this can be also seen as the ratio between the degrees of
freedom of the initial system with respect to the reduced one,
being generally proportional in numerical simulations to the
number of grid points, therefore to the Reynolds number in
the case of fluids. An example of a general CAE architecture
used in our implementations is shown in Fig. 1. In Tab. I we
report the main characteristics of the four CAEs implemented
here; starting from CF2, we obtained higher CFs by adding
more hidden layers to the initial architecture but trying to keep
the number of parameters fixed (as possible) in order to make
a more fair comparison of the four networks performance. In-
deed, the number of weights and biases, as highlighted by the
values in Tab. I, varies only by ≈ 10%. On the other hand,
more hidden layers allow networks with higher CF to learn
more features of the original fields during the compression
step. The number of hidden layers is intended for the entire
CAE architecture, comprising both the layers of the encoding
ne and decoding nd part; they usually have a number of lay-
ers which follow the relation nd = ne + 1, while the CAE is
symmetric if the total number of layers is even.

IV. HIGH-ORDER STATISTICS INFORMED NEURAL
NETWORK: H-SINN

The aim of this work is to devise a method that attains a
compression of the data volume of DNS for stratified turbu-
lence flows, while preserving their statistics (up to the fourth-
order moment, kurtosis). Mathematically, this goal can be cast
as a multi-objective optimization (MOO) problem and one
of the greatest advantage of using a neural network to solve
MOO problems is that, in principle, it is sufficient to include
any term that one wishes to minimize in the cost function and,
as long as such terms are differentiable, the neural network
will find a solution that approximately minimizes the objec-
tive (possibly a local minimum) through the back-propagation
procedure. This is known as scalarization method, where the
different terms are simply added together, each one weighted
by its own scalar factor81. Determining those weights is cru-
cial, especially when employing ANNs, to make sure that the
cost function is not dominated by one or a few terms only and
that the solution actually minimizes each term. Intuitively one
can think of the weights as normalization factors when differ-
ent terms in the cost function have different orders of mag-
nitude. Our implementation of H-SiNN involves the use of a
statistics-aware loss function in a CAE, thus creating what we
call statistics-informed convolutional autoencoder (SiCAE).
As mentioned above, we focus on up-to-fourth order moments
of the vertical velocity distribution, since we already know
that it presents the highest variability in our simulations. In
particular, our aim is to preserve standard deviation, skew-
ness, and kurtosis of the vertical component of the velocity
field w, which we indicate with the symbols σw, Skw, and Kw,
respectively. As a result, the cost function of the CAE com-

puted between the original data set y and its reconstruction ỹ
is defined as:

L (y, ỹ) =
1
D

(
W1

[u,v,w,θ ]

∑
y

M

∑
i=1

(yi − ỹi)
2

M
+W2

M

∑
i=1

(σwi −σw̃i)
2

M

+W3

M

∑
i=1

(Skwi −Skw̃i)
2

M
+W4

M

∑
i=1

(Kwi −Kw̃i)
2

M

)

=
1
D

4

∑
j=1

WjR j

(6)
with D = 3(W1 +W2 +W3 +W4), being the total sum of the
weights. The second, third, and fourth terms in (6) are the
mean square errors (MSEs) between the moments of the orig-
inal and the reconstructed vertical velocity W computed over
horizontal planes (x,y), namely the standard deviation σw, the
skewness Skw and kurtosis Kw respectively. We recall that for
a normal distribution, the reference values are: σ = 1, Sk = 0
and K = 3. In addition, here, we propose a method for dynam-
ically weighing the four terms in the cost function; each term
is properly weighted with values Wi varying at each epoch dur-
ing the training phase. In order to obtain a loss function with
terms having the same order of magnitude during the whole
training procedure at a given epoch m, the weight of the ith
term Wi is proportional to the sum of the other three terms at
the previous epoch m−1, e.g. W m

i = ∑ j ̸=i W
(m−1)
j R(m−1)

j (and
normalized such that their sum is equal to 1). Even though the
various terms of the statistics-informed loss function are well
balanced, the training procedure with additional constraints
either coming from the knowledge of the physical system,
as it happens for physics-informed neural networks (PINNs),
or from statistical information can be difficult, slower, and
sometimes very noisy. In order to mitigate gradient’s patholo-
gies when dealing with complex loss functions having sev-
eral terms, a different approach consists in defining Wi as pro-
portional to the gradients of the i-th term with respect to the
network parameters82. This technique was shown to be par-
ticularly efficient in balancing the loss function, especially in
PINNs82,83. A claim was made in the referenced studies that
using weights proportional to the loss itself leads to conver-
gence issues, though it does not seem to be the case in our
application, where the various loss terms are well balanced
and the global loss trend decays properly (see Fig. 2). That
being said, a comparison between the two approaches would
be interesting as a future study as it may lead to further im-
prove the novel CAE we propose here.
Finally, we have heuristically verified that the strategy of
training an H-SiNN in two stages is computationally faster
and more robust. In the first stage we treat the autoencoder as
a classical CAE, with only the first term in Eq. 6. After we
train for 50 epochs, we add the remaining terms in the cost
function, i.e. starting from a network that achieves a low re-
construction error, in terms of mean error. During the second
stage, we train the CAEs for 100 more epochs with the addi-
tion of statistical constraints on the first four moments of the
vertical velocity PDF; this is shown in panels (b)-(f) of Fig. 2.
A similar strategy has been successfully implemented for a va-
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Input
512 x 512 x (4 variables)(u, v, w, θ)

Conv2D 
+ 

MaxPool2D

Conv2D 
+ 

MaxPool2D

Conv2D 
+ 

UpSampling2D

Conv2D 
+ 

UpSampling2D

Latent 
Space

Output
512 x 512 x (4 variables)(u, v, w, θ)

Encoder Decoder

Figure 1. Schematic representation of a general Convolutional Autoencoder (CAE). The dimension of the latent space and the number of
encoding/decoding layers depend on the compression factor (CF). For each time step, the input is represented by horizontal slices (5122) of
the four physical variables produced by the simulations (u, v, w and θ ) stacked together forming a volume of 5122 ×4. The number of filters
and layers composing the encoder (and decoder) part also depends on the CF, all the CAEs implemented in this work are symmetric.

riety applications, most of them in the context of PINNs83,84.
The behavior of the different terms of the loss function during
one hundred epochs of training is shown in Fig. 3. We can ap-
preciate from the four panels how there are essentially three
weights (WMSE , Wσw and WSkw ) which are nearly equal for the
entire training phase, whereas the coefficient weighting the
kurtosis term is significantly smaller indicating a larger error
on the forth-order moment, as expected.

A. Plane-by-plane approach

We mentioned that the main objective is to obtain a tool
that is able to reproduce most of the features of the velocity u
and temperature θ fields of a fluid presenting high anisotropy
(stratification) and non-homogeneity, due to the presence of
large-scale intermittent structures. For these last reasons, we
further implemented the standard CAE algorithm to make it
more suitable and better performing in our particular appli-
cation. A key ingredient of stratified flows is anisotropy, in-
troduced by gravity, which tends to suppress vertical motions.
Therefore, even though we deal with fully three-dimensional
simulations the original cubic volume is split in horizontal
planes along the vertical direction (z) before being used as
input for the CAEs. This means that, for each time and height
value z, planes for every velocity component (u, v and w) and
for θ are stacked together creating three-dimensional input
data with dimensions 512× 512× 4, as indicated in Fig. 1.
Before being divided, the data are normalized x̂ = (x−µ)/σ

using the average µ and standard deviation σ computed on
each simulation cube. In this approach, we believe that pass-
ing the information from the three components of the veloc-
ity, together with the temperature, is essential for the CAE to
better reconstruct the flow dynamics at a given time t and al-
titude z since their variation is strictly correlated within the
primitive equations. This approach is limited in the possibil-
ity to add important information about the velocity field, like
the compressibility condition ∇ · u = 0, since operating by-
plane poses constraints on the vertical derivative of the veloc-
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Figure 2. Panel (a) shows the mean squared error (MSE) during the
first 50 epochs of the training stage where no other terms are added
to the loss function. In panel (b) the total loss during 100 epochs
of the second training stage, in which the loss function is composed
by four terms which are represented in panels (c)–(f) for the various
CAE with different compression factor (CF).

ity ∂zw. This leads to values for the maximum and average di-
vergence of u reported in Tab. II, where we can see that even if
on average the condition is well satisfied in the reconstructed
fields, locally this is not true while the condition is satisfied
also point-wise for the original field.

V. RESULTS

We analyze in detail the output of a single simulation run
for more than 45τNL corresponding to 100 time steps. Since in
our approach we divide each simulation cube in planes along
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CF8
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Epoch

CF16

Figure 3. History of the weights multiplying the different terms of
the loss functions: the mean squared error (MSE, black), the standard
deviation (σw, orange), the skewness (Skw, blue) and the kurtosis
(Kw, gray).

the vertical direction which are then treated as independent
during training, the data set we use for training and testing
our CAEs comprises Ns = 51,200 samples, each with dimen-
sion 5122 ×4 (5122 grid-points for four variables u, v, w and
θ ). We divide the data set in training and test set on a tempo-
ral basis, taking the first 70% snapshots for the training phase
and the remaining 30% for testing the performance.
The above strategy has been used to train four different
statistics-preserving CAE, with compression factors (CF) of
2, 4, 8, and 16. Figure 2 shows the history of the different
terms in the loss function, for an increasing number of epochs.
Red, green, blue, and cyan lines are respectively for CF 2, 4,
8, and 16. The first stage is made of 50 epochs, and in the
second stage, the networks are trained for an additional 100
epochs. The interesting feature, valid for all CFs, is that af-
ter the first stage (panel a) the MSE does not further decrease
(panel c), while all other moments decrease by one order of
magnitude or so (panels d-f). This shows that the second stage
of training achieves the goal of minimizing the error of stan-
dard deviation, skewness, and kurtosis, without significantly
degrading the point-wise accuracy of the reconstruction.

A. Global statistical properties of reconstructed fields

The trend of the statistical moments error appears to be in-
versely proportional to the moment order, meaning that the
improvement on the reconstructed standard deviation (2nd-
order moment) is more significant than what is achieved for
the kurtosis (4th-order moment) within the same amount of

Original CF2 CF4 CF8 CF16

|⟨∇ ·u⟩| [×10−11] 0.42 1.83 3.26 2.37 2.06
max{|∇ ·u|} 5.9 ·10−4 538 410 573 530

Table II. Average and maximum value of the divergence of the ve-
locity field after the reconstruction with the different CAE.

CAE MSE σw err. Skw err. Kw err. Loss
[×10−4] [×10−5] [×10−4] [×10−2] [×10−4]

1st stage
“standard loss”

CF2 0.39 0.13 10.9 18.4 0.39
CF4 0.55 0.45 13.2 22.4 0.55
CF8 0.54 0.82 19.1 19.0 0.54

CF16 1.1 5.3 44.9 41.7 1.1
2nd stage
“statistical-informed loss”

CF2 0.67 1.03 1.9 0.04 0.44
CF4 1.0 1.0 3.2 1.4 4.0
CF8 1.3 0.074 3.6 1.7 2.3
CF16 2.3 0.32 12.0 5.9 10.0

Table III. Results of the four CAE on the test set for both the first
(top) and second (bottom) training phase. Values in italic repre-
sent only check quantities monitored during the first training phase,
though they are not included in the loss function at this stage.

epochs. This is also pointed out in Fig. 3 where, for the four
different SiCAE, the trend of the various weights balancing
the loss function terms is reported as a function of the epoch;
let us recall that each weight Wi is inversely proportional to
the sum of the three contributions given from the other mo-
ments, taken at the previous epoch 1/∑(i ̸= j)Wj. In addition,
by looking at the behavior of the loss weights (Fig. 3), we ob-
serve that the error on the kurtosis is approximately between
one and two orders of magnitude larger than the others. This
significant difference may be due to the high variability of Kw
in this simulation5. Instead, standard deviation and skewness
are expected to vary less and to be closer to reference values
of a Gaussian distribution. As it is reasonable, a trend with the
compression factor is observed, and as expected the higher CF
the larger the reconstruction error both on the mean field and
the statistical moments; this is not related to the newly intro-
duced loss function since already during the first training stage
(panel (a)) this trend can be clearly observed. The details of
the results obtained on the test set for the various terms in-
volved in the loss function during the two training stages are
summarized in Tab. III. We can see that including other terms
into the loss function results in an average reconstruction error
2-3 times greater than what is obtained after the first training
stage, even though it remains on the order of MSE∼ 10−4,
consistent with other results found in literature85,86. In addi-
tion, when constraints on the statistical moments are added to
the model, we observe that the reconstruction of high-order
moments improves up to 10 times for any compression factor.

We selected an interval of the numerical simulation where
isolated extreme bursts occur, producing evident peaks of the
kurtosis Kw (see Fig. 4, panel (a)). In Fig. 4 the vertical ve-
locity kurtosis computed on the original data (black dashed
curve) is shown as a function of the turnover time for the en-
tire test set, and compared with the kurtosis obtained from
the CAEs reconstructions (different colors for different CF
values). Panels (a) and (b) show a comparison obtained re-
spectively after the first and second training phase; the rela-
tive error between the original Ka

w and recovered Kr
w kurtosis

is shown in panels (c, first phase) and (d, second phase). This
figure clearly highlights how the second stage of the training
(panels (b) and (d)) significantly improves the reconstruction
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Figure 6. PDF of the vertical velocity P(w) computed after the first
training stage (left panel) and at the end of the entire training stage
(right panel), taken at t/τNL ≈ 295. One can appreciate the PDF core
being in excellent agreement during stage one, while the fat tails of
the distribution are only recovered after introducing the custom terms
to the loss function in the second training stage (right panel).

of the fields up to the fourth-order moment of the vertical ve-
locity. All the CAEs show a significant reduction of the rel-
ative error, with marked improvements at the times at which
the volume Kw exhibits large non-Gaussian values (t ≈ 285τNL
and t ≈ 295τNL). In addition, with the application of the modi-
fied loss we are able to obtain percentage errors on the kurtosis
smaller than 10% on average. However, the improvement in
the reconstruction of the fourth-order moment is obtained also
for values close to the Gaussian reference (Kw ≈ 3). Indeed,
it is evident that our approach can be successfully extended
to other situations where the PDFs of the dynamical fields are
far from Gaussian-like shape, as is the case for the concentra-
tion of a passive scalar87 or for the velocity in the boundary
layer8,88. The statistical moments up to the fourth-order em-
bedded into the loss function guarantee an optimal reconstruc-
tion of the statistical properties of the physical fields without
any prior knowledge about the shape or variability of their
distribution function. The improvement we obtain with the
custom loss is quantified in Fig. 5 where we show the dif-
ference between the mean absolute percentage error (MAPE)
computed on Kw after the first and second training stage, as
a function of time (once again, note that the training is per-
formed by treating each plane and each time independently,
i.e. no correlation along the z direction or in time is taken into
account). The improvement reaches up to ≈ 40% at times with
high values of Kw but in general, an increase of nearly 10% is
observed at all times. In Fig. 6 we show the PDFs computed
on the entire volume at time t ≈ 295τNL (third gray circle in
Fig. 4), when Kw ≃ 6.8, using both the original data (black)
and data obtained from the four CAEs (colored curves). We
notice how after the first training stage (left panel) the PDF
core is already reliably recovered by the decoder, even though
the tails significantly differ. In particular, the difference be-
tween original and reconstructed statistics seems to increase
for higher |w|. The PDF in the right panel of Fig. 6, obtained
after the second training stage, completely resembles the one
computed from the original data, confirming that enforcing
the statistical moments up to the forth-order is sufficient to
enforce compatible PDFs. In Fig. 7 we show an example
of large-scale intermittent structures observed at three differ-
ent times, indicated by the gray circles in Fig. 4. The three-
dimensional renderings represent the vertical velocity field w
for low (top, t ≃ 288τNL), medium (center, t ≃ 295τNL) and
high (bottom, t ≃ 285τNL) values of the kurtosis Kw, where
values |w/σw|> 4 are highlighted in solid color while smaller
values are depicted as a transparent blue. Alongside each ren-
dering the vertical profiles of the kurtosis Kw computed plane-
by-plane on the original data (black), as well as on the re-
constructed field (colored for the different CFs) are reported.
Also for the top panel, when the kurtosis is small Kw ≃ 3.8
there are planes reaching values of Kw ≈ 6, thus indicating a
strong spatial variability even when the global kurtosis is close
to the Gaussian reference value. These effects are enhanced
when more vertical drafts develop within the flow (center and
bottom) with kurtoses more than one order greater than the
Gaussian reference values, as shown by the logarithmic scale
in Fig. 7.
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Figure 7. Left column: 3D renderings of the vertical velocity w/σw, where the most extreme structures have been highlighted in solid colors.
Right column: Vertical profile of the vertical velocity kurtosis Kw(z) of the original field (black dashed) and of the fields reconstructed with
the SiCAE (colored, see legend). The vertical gray dash-dotted line (mid panel) represents the time and height taken for Fig. 9. Let us notice
that the kurtosis is in logarithmic scale and the three panels show a different y-range for a clearer visualization.

B. CAE reconstruction of intermittent structures

We observed that the statistical properties and in particular
the kurtosis of the vertical velocity of the flow under study are
well recovered by the proposed implementation of statistics-
informed CAEs. As already mentioned, the presence of large-
scale extreme events produces intermittent patches of en-
hanced turbulence and regions populated by transient coherent
structures, making the reconstruction of the fields and the as-
sociated non-Gaussian statistics challenging. In this section,
we analyze how the introduction of global statistical terms to
the loss function does improve the point-wise reconstruction
of the full velocity (u) and potential temperature (θ ) field over
the entire domain, also by means of visualizations. In Fig. 8
we report three-dimensional renderings of the vertical veloc-
ity w obtained with the four CAEs, as well as the original field
for comparison. Data are taken at time t ≃ 295τNL, character-
ized by relatively high kurtosis, Kw ≈ 6.8. Extreme vertical
drafts are localized in the regions of the flow characterized
by very large values of the original normalized vertical veloc-
ity (|w/σw|), in Fig. 8 these correspond to the domain points
with |w/σw| > 4. The same kind of structures emerge in the

renderings of the reconstructed field, up to the highest com-
pression level (i.e., CF16); though for CF = 16 the shape and
location of the regions characterized by vertical drafts appears
blurred in the visualization compare to the original field, good
spatial correlation can still be appreciated. The gray transpar-
ent shading represents velocity values below the threshold of
4σw, and therefore the majority of the volume. The recon-
struction made by the implemented CAEs involves also the
other components of the velocity field (u and v), as well as
the (potential) temperature fluctuations θ . In order to have a
general overview of how the neural networks recover all the
physical quantities interested in the analyzed DNSs we rep-
resent them with several panels in Fig. 9. This figure shows
a horizontal cut (x,y) of the simulation domain taken at the
same time as the previous figure (Fig. 8 at the height z∗ in-
dicated with a dash-dotted line in Fig. 7 (middle panel). The
columns of Fig. 9 refer to the three components of the velocity
field u = (u,v,w) and the temperature θ . All the images are
represented by the same color bar which is not shown since
the main objective of this figure is the comparison between
the first row, the original data, and the others, being the re-
constructed physical fields for increasing values of the com-
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Figure 8. Three-dimensional visualizations, taken at t/τNL ≈ 295, of the extreme events in the vertical velocity w from the original data (big
cube), alongside the field reconstructed by the four SiCAE (small cubes). The vertical drafts (|w/σw| > 4) are highlighted as solid colors
(red/blue for positive/negative), whereas the other regions are represented as gray-shaded areas

pression factor. Since we are looking at the domain from the
top (gravity is a vector entering the page), it is correct to have
horizontal components strongly dominated by a nearly con-
stant positive (red) for v and negative (blue) for u mean wind
(see color bar); this is indeed the effect of Vertical Sheared
Horizontal Winds (VSHWs) which are ubiquitous in stratified
flows. Nevertheless, the horizontal components of the velocity
show small-scale perturbations where extreme vertical drafts
develop, as already seen throughout this manuscript. The ex-
treme events developed in this snapshot are clearly visible in
the vertical velocity w and partially from the temperature ren-
derings (third and fourth columns in Fig. 9), and the same
detail is captured also by the field reconstructions. Indeed,
as already noticed for the three-dimensional visualization, the
reconstruction is very reliable up to CF = 16 where a signif-
icant checkerboard effect starts developing everywhere in the
domain. This is probably due to the combined effect of the
high compression factor and of the statistical-informed loss
function presenting large-scale statistical constraints. In fact,
by looking at the reconstructed fields after the first stage of
training (not shown here), one can observe the same artifact at
high compression, though slightly reduced due to the absence
of other terms in the loss function.

VI. CONCLUSION

The outcome of this work demonstrates how the capabil-
ity of machine learning to reproduce dynamical fields in fluid
mechanics can be enhanced by incorporating physical and/or
statistical knowledge of the system under study. In particular,
we proposed a novel implementation of convolutional autoen-
coder (CAE) that includes a modified loss function able to
preserve the statistical moments of the vertical velocity field
up to the fourth order. We focused on the vertical component
of the velocity field produced by DNS of the Boussinesq equa-
tions with stable density stratification, since in a certain range
of the parameters of geophysical interest - of the Froude num-
ber in particular - these stratified flows develop strong veloc-
ity drafts along the z direction, as observed in the atmosphere
and oceans. The existence of this phenomenology resulting
from the interplay of turbulent motions and internal gravity
waves, represents a challenge when it comes to find an infor-
mative low-order representation of the physical fields. The
comparison between a standard implementation of CAE and
the SiCAE shows how the introduction of additional terms in
the cost function to enforce high-order moments of the PDF,
significantly improves the reconstruction of peculiar features
of stratified geophysical flows, while maintaining an accept-
able level of the error in the reconstruction of the mean fields.
The diagnostics implemented here confirm that the novel al-
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Figure 9. Horizontal slices of the four physical fields, from left to right: horizontal component of the velocity u and v (left and mid-left), the
vertical component w (mid-right) and the potential temperature θ (right) taken at t/τ ≈ 295 with a kurtosis Kw(z∗) = 10.0. From the second
line to the bottom the reconstructed field obtained with different CAE having increasing compression factor (CF).

gorithm we proposed is able to reconstruct with good accuracy
physical fields characterized by highly variable PDFs. In the
framework considered, the emergence of vertical drafts affects
the local dynamics of stratified turbulent fluids, which end up
being both non-stationary and non-homogeneous, making it
more difficult to model their statistical description. The results
we obtained can be potentially generalized to other physical
fields and systems, and used to address for instance the re-

construction of intermittent passive scalar fields89, in order to
investigate their diffusion properties, or the velocity field ob-
tained from observations of the planetary boundary layer8,88

and the upper atmosphere11,90. Highly variable PDFs have
also been obtainted from the analysis of dynamical fields mea-
sured in the oceans by means of GOMs91, and using data from
observations12, further widening the application of the anal-
ysis proposed here, which can be very helpful in managing
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large volumes of geophysical data from high-resolution nu-
merical simulations and state-of-art observational campaigns.
The addition of other terms to the loss function requires to
have longer training phases and larger dataset, in order to con-
verge to a well-trained model. Indeed, very often a compro-
mise is made between having detailed reconstructions of the
mean field dynamics and reproducing peculiar structures of
the turbulent flows, which is precisely where the algorithm
we presented improves the classical methodological approach
based on CAE.
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